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Abstract—The probabilistic bit (P-bit) is the core of probabil-

istic computing. We propose a novel in-situ P-bit compatible 

with compute-in-memory (CIM) schemes using voltage-con-

trolled magnetic tunnel junctions (MTJs) to eliminate the gen-

eration-sample-transfer-compute paradigm of current P-bits. 

The conventional approach of sampling and transferring ran-

dom sequences between separate P-bits and computing units 

reintroduces the memory bottleneck seen in von Neumann ar-

chitectures, thereby limiting the efficiency of probabilistic 

computing. By pairing a data-bit and a P-bit as a probabilistic 

differential pair in a crossbar array, we enable random se-

quences to be directly utilized for computing. This generation-

compute scheme eradicates the sampling and transfer costs as-

sociated with previous probabilistic computing methods. Full 

reuse of devices in the differential cells allows for probabilistic 

CIM with a large number of P-bits and high parallelism, suita-

ble for real-world probabilistic computing tasks. We demon-

strated in-memory neural stochastic differential equations for 

the reverse diffusion process in generative models. The results 

shows that without the bottlenecks, in-situ P-bit throughput is 

6× faster and 2.19× more efficient than ex-situ P-bits using the 

same technology. Compared to other devices and schemes, the 

proposed scheme is 3× faster than state-of-the-art CMOS de-

signs and 1.36× more energy efficient.   

I. INTRODUCTION 

Stochastic differential equations (SDEs) are critical mathe-

matical tools for modeling, analyzing, and predicting stochastic 

systems across various scientific, engineering, and financial do-

mains. As shown in Fig. 1, the differential of an SDE can be 

generalized by two terms: the probability flow ordinary differ-

ential equation (ODE) (drifting term) and the stochastic injec-

tion (Langevin diffusion term)[1]. Solving SDEs requires mul-

tiple numerical iterations, making the process computationally 

intensive. To mitigate this complexity, neural networks are be-

ing adapted to solve SDEs. An artificial neural network (ANN) 

can efficiently model the deterministic probability flow 

ODE[2], while the stochastic injection relies on true random 

number generation (TRNG). The quality and efficiency of the 

TRNG is crucial for the stochasticity of SDEs. Although many 

emerging devices based on P-bits are designed for probabilistic 

computing, current P-bit TRNGs follow a generation-sample-

transfer-compute scheme (Fig. 2)[3], [4]. Despite the efficiency 

of the emerging devices in TRNGs, sampling the random num-

bers requires amplifiers or filters, which are energy-consuming 

and slow. Additionally, transferring random sequences to prob-

abilistic computing units can cause significant delays, reintro-

ducing the memory bottleneck seen in von Neumann architec-

tures. 

Our work aims to overcome the existing bottlenecks in 

probabilistic computing schemes by integrating P-bits directly 

into computing units as in-situ P-bits. Utilizing the voltage-con-

trolled magnetic anisotropy (VCMA) effect (Fig. 3a), we con-

trol the energy barrier of the MTJ to function as either a data-

bit or a P-bit. By applying different control signals to conven-

tional differential pairs (Fig. 3b), we pair a data-bit and a P-bit 

in a cell, forming a probabilistic differential pair and enabling 

in-memory probabilistic computing (Fig. 3c). This probabilistic 

switching of P-bits facilitates in-situ Monte-Carlo (MC) drop-

connect sampling for probabilistic neural network computing, 

streamlining the process into a generation-compute scheme and 

overcoming the sampling and transfer bottlenecks present in 

conventional ex-situ P-bit systems. Experimental evaluations 

demonstrate that the proposed in-situ P-bits achieve significant 

speedup and energy efficiency due to the elimination of sample-

transfer bottlenecks. An additional advantage of in-situ P-bits is 

the 100% reuse of devices and circuits, enabling P-bits within 

computing units with zero overhead. This approach potentially 

allows for the integration of a massive number of P-bits in fu-

ture probabilistic computers. 

II. STANDALONE AND CMOS-INTEGRATED VCMA-

MTJ CHARACTERIZATION 

To evaluate the characteristics of the designed VCMA-MTJ 

devices, we fabricated two types of chips with standalone and 

CMOS-integrated devices. The standalone device chip (Fig. 4a 

and 4b) allows precise test pulses to be applied for basic switch-

ing behavior tests using probe stations (Fig. 4c). Additionally, 

array-level characterization and system demonstration were 

performed on the CMOS-integrated chip (Fig. 5). 

A. Data-bit Characterization 

The field-induced switching hysteresis loop in Fig. 6 shows 

that the magnetic tunnel ratio (TMR) measured on the 

standalone devices is above 100%. Fig. 7 shows the TMR dis-

tribution from four arrays, with low variations and a mean TMR 

measured under a 200mV read voltage of 65%. The resistance 



 

 

distribution across four arrays is plotted in Fig. 8. Despite some 

resistance variation between arrays in different locations, the 

read margin remains clear. When two devices are combined as 

one probabilistic differential pair, the conductance of three 

states is shown in Fig. 9, with each state having a read margin 

of around 6𝜎. Differential pairs were manually programmed to 

corresponding states to store a logo, and the output conductance 

was measured. Results in Fig. 10 indicate the high readability 

of the differential pair output. 

B. P-bit Characterization 

To set a VCMA-MTJ as a P-bit, we first measured the 

switching probability concerning pulse amplitude and duration 

on the standalone devices. Fig. 11 shows the duration-con-

trolled switching probability, with the first peak occurring at 

700ps. Fig. 12 illustrates the voltage-controlled switching prob-

ability, with a 50% switching probability found at 1.5V and a 

stochastic switching window of approximately 1V. Fig. 13 

shows the switching probability within an array, where varia-

tions are observed due to device variations and circuit delay. 

The pulse duration and amplitude with a 50% mean switching 

probability were used for TRNG/P-bit configuration. 

III. TRUE RANDOM NUMBER GENERATION OF THE IN-

SITU P-BIT WITH VCMA-MTJ 

The quality of true random number generation from the P-

bit is critical for SDEs. The VCMA-MTJ P-bit's stochasticity 

arises from thermal noise-induced random motion of the spins, 

enabling high-quality random number generation without fur-

ther calibration. To evaluate generation quality experimentally, 

a write pulse was applied to the integrated MTJs, and the device 

state was read out. Fig. 14 shows the stochastic bit streams 

(SBS) from a single device, and Fig. 15 plots the conductance 

of each random bit. The low cycle-to-cycle variation of MTJ 

devices ensures a high read margin of two states and calibra-

tion-free TRNG. The high-quality TRNG of our devices is val-

idated by several randomness tests, including the autocorrela-

tion test (Fig. 16), inter-sample Hamming distance of different 

SBS (Fig. 17), Shannon entropy of SBS (Fig. 18), and the NIST 

SP800-22 randomness test (Table I). Additionally, Fig. 19 

demonstrates the high endurance of the P-bit devices for 1012 

write cycles without significant conductance degradation. Fig. 

20 shows the schematic and layout of the VCMA-MTJ proba-

bilistic differential pair. The topology of the proposed design is 

the same as conventional differential cells that can be easily in-

tegrated with other CIM schemes. 

IV. DEMONSTRATION OF IN-MEMORY NEURAL SDE 

USING PROBABILITY DIFFERENTIAL PAIR FOR 

IMAGE GENERATION 

Diffusion models for generative AI are among the most 

promising applications of neural SDEs. While many works use 

probability flow ODEs as a simplified version of reverse diffu-

sion SDE to reduce the generation cost, SDEs still outperform 

in terms of generation quality[1]. Our goal is to generate high-

quality samples efficiently using the proposed probabilistic dif-

ferential pair. Fig. 21 shows the computing scheme of conven-

tional ex-situ P-bit reverse diffusion SDE in the latent space[5]. 

The latent code 𝒁𝑇  is forwarded to the ANN to calculate the 

probability flow ODE. The ex-situ P-bit generates SBS, which 

is added to the ANN output to get the SDE differential. The 

proposed in-situ P-bit reverse diffusion SDE uses the inherent 

stochasticity of MC dropconnect Bayesian neural networks 

achieved by probabilistic differential pairs to directly calculate 

the SDE differential. After a few iterations, the latent code at 

the SDE edge condition is decoded by a variational autoencoder 

(VAE) to generate the sample. The fundamental difference be-

tween ex- and in-situ P-bit methods lies in the point of stochas-

ticity injection. For a fair comparison, we used the same net-

work for models with or without MC dropconnect in the fol-

lowing experiments. As shown in Fig. 22a, the lack of stochas-

ticity in ANNs necessitates an ex-situ stochastic injection step. 

In contrast, MC dropconnect models are inherently stochastic 

and can inject stochasticity in situ[6]. Fig. 22b demonstrates a 

good regression result of MC dropconnect models on the same 

distribution. We compared performance in terms of generation 

quality, energy consumption, and delay using the same com-

pute-in-memory (CIM) emulator for neural network computing 

for both ex- and in-situ methods (Fig. 23). The conductance of 

each differential pair was measured from the CMOS-integrated 

VCMA-MTJ arrays, with the in-situ method taking additional 

SBS from arrays for in-situ P-bits. As shown in Fig. 24, the 

proposed in-memory neural SDE has a distribution[7] similar 

to the conventional ex-situ method, indicating good generation 

quality. Benchmarking the energy and delay of systems with 

different P-bit generation schemes (Table II), the proposed in-

situ P-bit generation achieves 3~1×106 higher throughput and 

1.36~1.9×105 higher energy efficiency with the lowest addi-

tional area cost to make the CIM system support probabilistic 

computing.  

V. CONCLUSION 

We experimentally demonstrated the behavior of data-bits 

and P-bits in both standalone and integrated VCMA-MTJ de-

vices, validating that the proposed probabilistic differential pair 

based on these devices exhibits a high read margin with MC 

dropconnect support for CIM. The TRNG quality of our devices 

was experimentally evaluated, achieving a 3× speedup com-

pared to existing state-of-the-art CMOS TRNGs. We further 

adapted the probabilistic differential pairs to demonstrate their 

application in in-memory neural SDEs for image generation. 

The results indicate that our proposed probabilistic computing 

scheme, which overcomes the sampling and transfer bottleneck 

of conventional methods, significantly increases efficiency. 

The complete reuse of devices in the differential cells also ena-

bles the integration of a large number of P-bits and high paral-

lelism in probabilistic computing. 
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Fig. 1. A neural SDE uses a neural network to
fit the transition of a probability flow ODE.
Then a stochastic injection from TRNG is
added for langevin diffusion. Finding the edge
condition requires iterative steps of the SDE.

Fig. 2. The Existing P-bit based probabilistic
computing follows a generation-sample-transfer-
compute scheme. However, the sample and transfer
are either energy-consuming or slow, which
becomes the bottleneck of probabilistic computing. 

Fig. 3. (a) The VCMA effect can change the
behavior of the device for data/probabilistic usage.
(b) A probabilistic differential pair with VCMA-
MTJ. (c) The generation-compute scheme of
probabilistic differential pair can avoid bottlenecks.
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Fig. 4. (a) TEM of the VCMA-MTJ. (b)
Standalone VCMA-MTJ test chip. (c)
The standalone devices are tested with a
probe station to apply accurate pulse for
detailed analysis.

Fig. 5. (a) TEM of the CMOS-
integrated VCMA-MTJ. (b) VCMA-
MTJ fabricated with BEOL process
showing clear edge. (c) The test
platform of integrated devices.

Fig. 6. Field induced
switching  hysteresis curves for
standalone devices. Measured
with 14mV and the TMR is above
100% with high yield.

Fig. 7. TMR measured from 4
arrays with 200mV of integrated
VCMA-MTJ devices. The MTR
variation between different arrays
is small at a mean value of 65%.

Fig. 8. Resistance distribution obtained from 4 arrays of the integrated
VCMA-MTJ test chip. The mean and sigma values are annotated
separately, showing good uniformity accross arrays. 

Fig. 9. Conductance distribution of the
three states of the probabilistic
differential pairs. The distance is 6σ.

Fig. 10. Manually program the state of
the probabilistic differential pairs into
targeted states to faithfully store a logo.

Fig. 11. The switching probability
versus pulse width obtained from
standalone VCMA-MTJ devices. The
highest switching probability is
obtained at 700ps write pulse.

Fig. 12. The switching probability versus
pulse amplitude obtained from standalone
VCMA-MTJ devices. The 50% switching
probability is obtained at 1.5V write
pulse with a large stochastic window.

Fig. 13. The switching probability versus pulse amplitude obtained
from integrated VCMA-MTJ devices under different write voltages.
Due to the different locations of the devices and device variations the
switching probability also varies. The mean value of the switching
probability is highlighted in red.

 (c) Test Chip
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Demonstration of In-Memory Neural SDE Using Probability Differential Pair for Image Generation 
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True Random Number Generation of the In-Situ P-bit with VCMA-MTJ

Test P-Value Results
Frequency 0.810 Pass

Block Frequency 0.921 Pass
Cumulative Sums 0.991 Pass

Runs 0.831 Pass
Longest Runs of

Ones 0.202 Pass

Random Excursion 0.815 Pass
FFT 0.897 Pass

Non Overlapping
Template All Pass

Serial 0.975 Pass

Approximate Entropy 0.970 Pass

Table I. The Nist SP800-22 Randomness
Test of P-bit in Probabilistic Differential Pair

(a) (b) (c)
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Fig. 14. A stochastic bit stream with a
length equal to 300. Showing uniform
distribution of the ones and zeros.

Fig. 15. The conductance measurement
of the random sequence with length equal
to 300. Conductances for 1/0 are stable.

Fig. 16. The autocorrelation test
result of the random sequences at
95% confidence level (±0.028).

Fig. 17. The inter-sample hamming
distance between multiple random
sequences with a mean value of 0.5.

Fig. 18. The Shannon entropy
calculated from a random sequence
with length equal to 4096 obtained
from the integrated chip.

Fig. 21. Image generation using diffusion model in the latent space. The differential
of each step is calculated by the neural SDE. Conventional ex-situ P-bit method
injects the stochasticity explicitly while in-situ P-bit directly include the langevin
motion implicitly in the inherent model stochasticity of MC dropconnect bayesian
NN. The latent code at edge condition is decoded to pixel space by a VAE decoder.

Fig. 22. A heteroscedastic regression task. (a) The ANN tends to
predict the mean value of the data and completely misses the
knowledge of stochasticity. (b) MC dropconnect models with
probabilistic differential pairs can correctly capture the variation of
the data with its inherent stochasticity.

Fig. 19. The conductance of 4
devices after applied for 1e12
write-read pulses without
significant conductance change.

Fig. 23. Data flow of
In/Ex-situ P-bit Neural
SDE computing. Both
schemes are based on
the same CIM system.

Fig. 24. Data distribution clustered by UMAP[7] method. (a) Original
data distribution. (b) Generated data by the ex-situ P-bit generation
method. (c) Generated data by in-situ P-bit method. (d)-(f) Sample data
from each method. The generated samples show highly similar images
to the original data, indicating a good generation quality. 
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Table II. P-bit/TRNG performance comparison of
different works
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